This book treats cavitation, which is a unique phenomenon in the field of hyd- dynamics, although it can occur in any hydraulic machinery such as pumps, propellers, artificial hearts, and so forth. Cavitation is generated not only in water, but also in any kind of fluid, such as liquid hydrogen. The generation of cavitation can cause severe damage in hydraulic machinery. Therefore, the prevention of cavitation is an important concern for designers of hydraulic machinery. On the contrary, there is great potential to utilize cavitation in various important applications, such as environmental protection. There have been several books published on cavitation, including one by the same authors. This book differs from those previous ones, in that it is both more physical and more theoretical. Any theoretical explanation of the cavitation phenomenon is rather difficult, but the authors have succeeded in explaining it very well, and a reader can follow the equations easily. It is an advantage in reading this book to have some understanding of the physics of cavitation. Therefore, this book is not an introductory text, but a book for more advanced study. However, this does not mean that this book is too difficult for a beginner, because it explains the cavitation phenomenon using many figures. Therefore, even a beginner on cavitation can read and can understand what cavitation is. If the student studies through this book (with patience), he or she can become an expert on the physics of cavitation.
This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann-Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi-Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface.Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.