Amor y venganza se dan cita en esta historia de Pedro Antonio de Alarcón, publicada en 1875. En ella un joven aristócrata, Fabián Conde, se arrepiente de su escandalosa vida por amor a Gabriela, su futura esposa, pero encuentra un obstáculo en las calumnias de la mujer de su mejor amigo, que se siente despechada.
El Sombrero De Tres Picos es una divertida historia que supone el título más conocido de Pedro Antonio de Alarcón. Crea una ingeniosa trama de enredo amoroso con humor, ironía, y un simpático catálogo de personajes que configura un agudo retrato social de la época en la que transcurre la acción. El libro, con trazos costumbristas, narra las ansias de un comendador por conseguir los favores sentimentales de una atractiva molinera.
Su fama en nuestros días procede, sobre todo, de haber inspirado el ballet del mismo título compuesto por Manuel de Falla.
This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann-Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi-Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface.Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.